小粉丝 发表于 2009-1-9 14:48

败者为王——诺斯罗普YF-23战机

1990年6月22日,YF-23A原型机PAV-1“灰色幽灵”在爱德华兹空军基地进行公开展示,立刻以其前卫的气动外形吸引了众多目光。

  尾翼 V形尾翼设计并非诺斯罗普首创。1956年法国C.M.175教练机就采用了V形尾翼。洛克希德的F一117A也是如此(不过比较特殊,只提供方向控制)。但在强调机动性的未来战机上采用V形尾翼设计,YF-23A是第一个。
  YF一23A的v形尾翼设计相当独特。为了保证4波瓣雷达反射特性,平尾前后缘在水平面内的投影分别和机翼前后缘平行。这使得该机尾翼看起来相当巨大。考虑到大部分雷达反射发生在与水平面成±30度的范围内,YF一23A采用了将尾翼外倾40度的设计,以确保雷达波不会被反射回接收机,但相应的尾翼效率也降低了。相比之下,YF一22A采用91、倾27度的设计,处F隐身设计的边缘,属于隐身和机动综合权衡的结果。按照公开的说法,YF一23A出于大迎角机动性的要求,其尾翼采用宽间距布置,完全避开了边条和机翼内侧涡流,因此改善了剧烈机动状态下俯仰、滚转和偏航控制。
  就隐身而言,YF-23A的尾翼设计显然是成功的,但其气动效率却不免令人担、心。偏航、俯仰、滚转,二轴控制全部包揽。一物多用固然好,但重要却往往被人忽略的一点是:尾翼的总控制能力是有限的,某个轴占用较多的控制能力,必然会削弱其它轴的控制能力。当飞机陷于比较复杂的状态时,YF-23A的尾翼未必能兼顾。看看后来F一22的过失速试飞情况就知道了,操纵面的控制负荷是相当重的,而且还要加上推力矢量控制才行。当然,换个角度想,可能诺斯罗普压根儿就没有考虑超火迎角飞行的控制问题。能够保证大迎角范围内不出现气动发散的情况(诺斯罗普称,风洞数据显示YF-23A可以在所有迎角范围内稳定飞行,但YF一23A的试飞迎角最终也没有超过25度),是诺斯罗普在这方面所作的极限了。毕竟机动性并小是YF-23A的第一优先目标,过失速机动性就更不用说了。
  飞控系统和推力矢量控制 随控布局经过长期验证在ATF设计阶段已经相当成熟。YF一23A应用随控布局技术、为此采用电传飞控系统并不令人意外。不过由于最终竞争失败,外界对该机的飞控系统细节了解极少。 前面已经提到,YF一23A在设计上具有鲜明的“一物多用”的特色。由于减少了操纵面和相应的控制机构,有助于飞机减轻重量和减小阻力,对于改善飞机隐身特性也是相当有利的。但除了操纵面负荷问题外,这种设计必然面临的一个考验就是飞控系统的复杂化。固然,在已经成功的B一2上也可以见到类似的设计,不过必须看到的是,对于不需要进行复杂机动的轰炸机而占,这种一物多用的设计问题不大;然而战斗机即使在常规条件下的机动,其操纵面的偏转控制也是相当复杂的,一物多用的设计必然会加大飞控系统的复杂程度和研制风险。如果还要考虑超常规飞行的话,飞控系统的设计难度可想而知。飞控软件的编制是飞控系统设计难点之一。自电传飞控系统实用化以来,大多数一流战机都在这上面栽过跟头。1992年4月25日,YF一22A因为飞控软件问题造成“飞行员诱发振荡”,撞地损毁。后来F一22试飞阶段还不断对飞控软件进行改进升级。连基本按照常规设计的YF一22A飞控系统都有这么多麻烦,非常规设计的YF一23A飞控系统就更难说。在对设计风险的判断上,美国空军还是比较准确的。
  如果YF一23A采用了推力矢量控制系统,一物多用带来的控制面负荷问题町能会得到缓解,对改善机动性和敏捷性也有好处。但诺斯罗普最终放弃了推力矢量,以确保其首要目标——隐身能力。因为如要应用推力矢量控制技术,就必须更改后机身设计,不仅增大了飞机重量,也导致飞机雷达反射截面积(主要是后向)增大和红外隐身能力下降——因为必须取消那个沟槽式尾喷口设计。这并不符合诺斯罗普的设计思想。
  进/排气系统 进气道和发动机一级压气机是喷气机前方雷达反射截面积的主要来源,设计稍有不慎即可导致为隐身所作的努力全数付诸东流。通常在中、高空飞行的飞机,如F-117、B-2,其主要威胁来自下方,因此可将进气道和喷管置于机体上表面,以机身遮挡主要雷达反射特征。但对于制空战斗机而言,这一威胁定律显然不适用。如果住所有方向上的威胁具有同等可能性,在这种情况下依据什么原则来设计飞机呢?并没有一个人人满意的答案。从YF一23A的设计来看,在没有适用的隐身规则的情况下,其进气道设计选择了遵循机动性和进气要求。
  发动机进气道是一个空腔结构,本身就是良好的雷达波反射体。而发动机一级压气机高速旋转的叶片不仅是强反射源,其反射波频谱甚至足以成为飞机型号的识别特征。要解决隐身问题,就必须首先解决这两个麻烦。解决途径之一是遮挡。F-111、幻影那种三元进气道,其激波锥可以在一定程度上遮蔽进气道内部和压气机的反射波,但问题是激波锥本身就是一个强雷达散射源。另一个也是更常采用的途径是S形进气道,并在进气道内敷设吸波材料。不过S形进气道并不是想象中那么简单,设计不当可能导致严重的总压损失。没有大量的验证,设计时少不了要吃苦头的。
  YF-23A的进气口位于机翼下方靠近前缘的位置,类似苏一27的设计,这显然是处于大迎角条件下进气要求的考虑。其横截面为梯形,除了垂直面上的斜切结构外,在水下面上也略有斜切,可以起到改善大迎角和侧滑条件下进气效率的作用。在进气口前方,设计有多孔式附面层吸除装置(机翼下表面未喷漆区域),并经机翼上表面排出一一由于进气口靠近机翼前缘,附面层厚度不大,因此不需要采用大型的附面层隔道,有助于减小雷达反射特征。在发动机舱卜表面还设计有辅助进气门(位于附面层排放狭缝旁边的带锯齿后缘的梯形板),用于在起降和低速状态下满足发动机的进气需要。根据隐身原则,进气道自进气口开始向内、向上弯曲,从正前方根本不可能看到压气机叶片,可获得较好隐身效果。此外,YF-23A采用了固定式进气道设计,以避免可调式进气道的调节斜板之间的缝隙和台阶产生的雷达反射。压缩斜板为二波系设计,并按照YF-23A的预计巡航速度作了优化。
  YF-23A的发动机喷口设计带有明显的B-2风格。沟槽状喷口位于V形尾翼之间扁平的“海狸尾巴”上,以耐热材料作为衬垫。喷口顶端铰接一块无边形调节板,用于调节喷口大小。在海狸尾巴、V形尾翼、沟槽侧壁的屏蔽下,来自燃烧室的热喷流在沟槽段与冷空气混合降温(二元矩形喷口使得喷流更容易与周围空气混合),然后再排出机外,红外特征较之常规战斗机明显降低。除了隐身作用外,笔者推测,YF-23A的喷口设计可能还具有引射增升的作用,V形尾翼则起到了类似端板、增强增升效应的作用。不过这一推测没有获得资料证实。

难得一见的场面,诺斯罗普两兄弟:滑行道待命的YF-23A PAV-1和即装着陆的B-2A。从侧面看,YF-23A复杂的曲面造型和B-2A有颇多类似之处。



[ 本帖最后由 小粉丝 于 2009-1-9 14:49 编辑 ]

小粉丝 发表于 2009-1-9 14:53

.....

小粉丝 发表于 2009-1-9 14:54

.....

gochinway47;) 不能不感叹米国科技的强大

M-POWER 发表于 2009-1-9 15:43

飞机大炮...沙发gochinway35;)

LYL-LING 发表于 2009-1-9 15:55

PAO

fissa 发表于 2009-1-10 03:42

这个感觉我喜欢~~gochinway64;)
页: [1]
查看完整版本: 败者为王——诺斯罗普YF-23战机


速道改装车社区论坛所有帖子仅代表作者本人意见,不代表本网站立场。
转载文章请注明作者及出自"速道性能车改装车网(http://www.chinway.com.cn)",如用于商业用途请联系原作者

拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论!

©2007-2020 速道性能改装车网